Item
 Base date
 Base price
 Price on adjustment date
 Comments

Christmas cracker
 31 December 2008
 688,800,000
 2,147,483,644
 Unchanged

Blue partyhat
 340,100,000
 2,147,483,647

Green partyhat
 114,800,000
 1,512,978,741

Purple partyhat
 83,100,000
 1,242,748,792

Red partyhat
 129,400,000
 1,706,390,538

White partyhat
 183,300,000
 2,147,481,758

Yellow partyhat
 96,300,000
 1,325,097,236

Pumpkin
 5,300,000
 157,608,053

Easter egg
 4,300,000
 62,666,643

Blue h'ween mask
 12,800,000
 121,249,470

Green h'ween mask
 10,600,000
 98,258,298

Red h'ween mask
 17,300,000
 170,663,885

Santa hat
 14,800,000
 125,533,632

Disk of returning
 4,700,000
 211,466,440

Half full wine jug
 31,100,000
 348,603,157

Fish mask
 29 September 2012
 4,555,462
 669,574

Christmas tree hat
 20 January 2013
 2,295,576
 12,559,556

Crown of Seasons
 23 July 2013
 8,307,542
 4,555,009

Black Santa hat
 20 January 2013
 222,967,707
 410,924,805

Cloak of Seasons
 –
 –
 7,614,236
 Added item

Calculations
From the old divisor obtained from the templates:
 $ {div}_{\text{old}} = 15.2787 $
We need to calculate a new divisor:
 $ {div}_{\text{new}} = {div}_{\text{old}} \times \frac{\sum \left ( \frac{p}{q} \right )_{\text{new}}}{\sum \left ( \frac{p}{q} \right )_{\text{old}}} $
To calculate the new divisor, we need to find:
 $ \begin{align} \sum \left ( \frac{p}{q} \right )_{\text{old}} & = \text{sum of ratios prior to change} \\ & = \frac{2,147,483,644}{688,800,000} + \frac{2,147,483,647}{340,100,000} + \frac{1,512,978,741}{114,800,000} + \dots + \frac{4,555,009}{8,307,542} + \frac{410,924,805}{222,967,707} \\ & = 221.84047459 \text{ (up to 8 d.p.)} \end{align} $
And also:
 $ \begin{align} \sum \left ( \frac{p}{q} \right )_{\text{new}} & = \text{sum of ratios prior to change}  \text{sum of removed ratios} + \text{sum of added ratios} \\ & = \sum \left ( \frac{p}{q} \right )_{\text{old}}  \text{sum of removed ratios} + \text{number of added items} \\ & = 221.84047459  0 + 1 \\ & = 222.84047459 \text{ (up to 8 d.p.)} \end{align} $
Thus, the new divisor is:
 $ \begin{align} {div}_{\text{new}} & = {div}_{\text{old}} \times \frac{\sum \left ( \frac{p}{q} \right )_{\text{new}}}{\sum \left ( \frac{p}{q} \right )_{\text{old}}} \\ & = 15.2787 \times \frac{222.84047459}{221.84047459} \\ & = 15.3476 \text{ (4 d.p.)} \end{align} $
