Item
 Base date
 Base price
 Price on adjustment date
 Comments

Christmas cracker
 31 December 2008
 688,800,000
 2,147,476,523
 Unchanged

Blue partyhat
 340,100,000
 2,147,483,647

Green partyhat
 114,800,000
 1,439,919,758

Purple partyhat
 83,100,000
 1,194,593,128

Red partyhat
 129,400,000
 1,588,813,583

White partyhat
 183,300,000
 2,115,586,339

Yellow partyhat
 96,300,000
 1,288,308,900

Pumpkin
 5,300,000
 153,543,323

Easter egg
 4,300,000
 73,851,614

Blue h'ween mask
 12,800,000
 130,080,270

Green h'ween mask
 10,600,000
 107,141,857

Red h'ween mask
 17,300,000
 168,034,752

Santa hat
 14,800,000
 130,038,816

Disk of returning
 4,700,000
 193,631,082

Half full wine jug
 31,100,000
 282,814,298

Fish mask
 29 September 2012
 4,555,462
 1,778,504

Christmas tree hat
 –
 –
 2,295,576
 Added item

Calculations
From the old divisor obtained from the templates:
 $ {div}_{\text{old}} = 15.0826 $
We need to calculate a new divisor:
 $ {div}_{\text{new}} = {div}_{\text{old}} \times \frac{\sum \left ( \frac{p}{q} \right )_{\text{new}}}{\sum \left ( \frac{p}{q} \right )_{\text{old}}} $
To calculate the new divisor, we need to find:
 $ \begin{align} \sum \left ( \frac{p}{q} \right )_{\text{old}} & = \text{sum of ratios prior to change} \\ & = \frac{2,146,908,554}{688,800,000} + \frac{2,147,483,647}{340,100,000} + \frac{1,439,919,758}{114,800,000} + \dots + \frac{1,778,504}{4,555,462} \\ & = 209.14534690 \text{ (up to 8 d.p.)} \end{align} $
And also:
 $ \begin{align} \sum \left ( \frac{p}{q} \right )_{\text{new}} & = \text{sum of ratios prior to change}  \text{sum of removed ratios} + \text{sum of added ratios} \\ & = \sum \left ( \frac{p}{q} \right )_{\text{old}}  \text{sum of removed ratios} + \text{number of added items} \\ & = 209.14534690  0 + 1 \\ & = 210.14534690 \text{ (up to 8 d.p.)} \end{align} $
Thus, the new divisor is:
 $ \begin{align} {div}_{\text{new}} & = {div}_{\text{old}} \times \frac{\sum \left ( \frac{p}{q} \right )_{\text{new}}}{\sum \left ( \frac{p}{q} \right )_{\text{old}}} \\ & = 15.0826 \times \frac{210.14534690}{209.14534690} \\ & = 15.1547 \text{ (4 d.p.)} \end{align} $
