FANDOM


6 November 2011
Item Base date Base price Price on adjustment date Comments
Grimy guam 9 June 2009 490 121 Unchanged
Grimy marrentill 192 25
Grimy tarromin 216 121
Grimy harralander 787 100
Grimy ranarr 7,654 4,032
Grimy toadflax 2,315 3,637
Grimy irit 1,552 1,172
Grimy wergali 1,800 2,450
Grimy spirit weed 1,917 2,658
Grimy avantoe 1,591 3,293
Grimy kwuarm 2,850 1,356
Grimy snapdragon 9,720 5,224
Grimy cadantine 1,234 1,186
Grimy lantadyme 1,272 5,006
Grimy dwarf weed 2,042 4,744
Grimy torstol 2,980 25,300
Clean guam 481 126
Clean marrentill 101 16
Clean tarromin 193 143
Clean harralander 791 100
Clean ranarr 7,719 3,867
Clean toadflax 2,362 3,644
Clean irit 1,795 1,232
Clean wergali 2,000 2,331
Clean spirit weed 1,888 2,725
Clean avantoe 1,593 3,253
Clean kwuarm 2,881 1,389
Clean snapdragon 9,726 5,402
Clean cadantine 1,245 1,206
Clean lantadyme 1,319 5,267
Clean dwarf weed 2,070 4,668
Clean torstol 2,762 25,400
Grimy fellstalk 1,799 Added item
Clean fellstalk 1,437

Calculations

From the old divisor obtained from the templates:

$ {div}_{\text{old}} = 32.0000 $


We need to calculate a new divisor:

$ {div}_{\text{new}} = {div}_{\text{old}} \times \frac{\sum \left ( \frac{p}{q} \right )_{\text{new}}}{\sum \left ( \frac{p}{q} \right )_{\text{old}}} $


To calculate the new divisor, we need to find:

$ \begin{align} \sum \left ( \frac{p}{q} \right )_{\text{old}} & = \text{sum of ratios prior to change} \\ & = \frac{121}{490} + \frac{25}{192} + \frac{121}{216} + \dots + \frac{25,400}{2,762} \\ & = 51.57722802 \text{ (up to 8 d.p.)} \end{align} $


And also:

$ \begin{align} \sum \left ( \frac{p}{q} \right )_{\text{new}} & = \text{sum of ratios prior to change} - \text{sum of removed ratios} + \text{sum of added ratios} \\ & = \sum \left ( \frac{p}{q} \right )_{\text{old}} - \text{sum of removed ratios} + \text{number of added items} \\ & = 51.57722802 - 0 + 2 \\ & = 53.57722802 \text{ (up to 8 d.p.)} \end{align} $


Thus, the new divisor is:

$ \begin{align} {div}_{\text{new}} & = {div}_{\text{old}} \times \frac{\sum \left ( \frac{p}{q} \right )_{\text{new}}}{\sum \left ( \frac{p}{q} \right )_{\text{old}}} \\ & = 32.0000 \times \frac{53.57722802}{51.57722802} \\ & = 33.2409 \text{ (4 d.p.)} \end{align} $
Community content is available under CC-BY-SA unless otherwise noted.