## FANDOM

44,122 Pages

The Rune Index is made up of a weighted average of all of the current runes listed in the Market Watch, with the starting date of this average on 15 December 2007, at an index of 100. The overall rising and falling of rune prices is reflected in this index.

While specialised for just watching rune prices, it is set up and adjusted in a manner similar to the Common Trade Index, and the divisor may be adjusted to include new runes added by Jagex (see the FAQ for more information).

## Summary

Any suggested changes to this index should be added to the talk page.

## List of items

This is the current list of runes included in this index:

14 October 2011
Air rune 15 December 2007 11 6 Unchanged
Mind rune 10 3
Water rune 15 6
Earth rune 11 13
Fire rune 10 4
Body rune 9 5
Cosmic rune 140 107
Chaos rune 102 38
Nature rune 258 100
Law rune 304 158
Death rune 299 181
Astral rune 132 81
Blood rune 336 211
Soul rune 335 556

Calculations

From the old divisor obtained from the templates:

${div}_{\text{old}} = 14.0000$

We need to calculate a new divisor:

${div}_{\text{new}} = {div}_{\text{old}} \times \frac{\sum \left ( \frac{p}{q} \right )_{\text{new}}}{\sum \left ( \frac{p}{q} \right )_{\text{old}}}$

To calculate the new divisor, we need to find:

\begin{align} \sum \left ( \frac{p}{q} \right )_{\text{old}} & = \text{sum of ratios prior to change} \\ & = \frac{6}{11} + \frac{3}{10} + \frac{6}{15} + \dots + \frac{556}{335} \\ & = 8.93366198 \text{ (up to 8 d.p.)} \end{align}

And also:

\begin{align} \sum \left ( \frac{p}{q} \right )_{\text{new}} & = \text{sum of ratios prior to change} - \text{sum of removed ratios} + \text{sum of added ratios} \\ & = \sum \left ( \frac{p}{q} \right )_{\text{old}} - \text{sum of removed ratios} + \text{number of added items} \\ & = 8.93366198 - 0 + 1 \\ & = 9.933661982 \text{ (up to 8 d.p.)} \end{align}

Thus, the new divisor is:

\begin{align} {div}_{\text{new}} & = {div}_{\text{old}} \times \frac{\sum \left ( \frac{p}{q} \right )_{\text{new}}}{\sum \left ( \frac{p}{q} \right )_{\text{old}}} \\ & = 14.0000 \times \frac{9.93366198}{8.93366198} \\ & = 15.5671 \text{ (4 d.p.)} \end{align}
30 August 2014
Air rune 15 December 2007 11 19 Unchanged
Mind rune 10 6
Water rune 15 26
Earth rune 11 14
Fire rune 10 22
Body rune 9 8
Cosmic rune 140 245
Chaos rune 102 41
Nature rune 258 263
Law rune 304 281
Death rune 299 163
Astral rune 132 245
Blood rune 336 261
Soul rune 335 153
Armadyl rune 14 October 2011 1,817 389
Mist rune 348
Dust rune 66
Smoke rune 314
Mud rune 775
Lava rune 49

Calculations

From the old divisor obtained from the templates:

${div}_{\text{old}} = 15.5671$

We need to calculate a new divisor:

${div}_{\text{new}} = {div}_{\text{old}} \times \frac{\sum \left ( \frac{p}{q} \right )_{\text{new}}}{\sum \left ( \frac{p}{q} \right )_{\text{old}}}$

To calculate the new divisor, we need to find:

\begin{align} \sum \left ( \frac{p}{q} \right )_{\text{old}} & = \text{sum of ratios prior to change} \\ & = \frac{19}{11} + \frac{6}{10} + \frac{26}{15} + \dots + \frac{153}{335} + \frac{389}{1,817} \\ & = 16.36670735 \text{ (up to 8 d.p.)} \end{align}

And also:

\begin{align} \sum \left ( \frac{p}{q} \right )_{\text{new}} & = \text{sum of ratios prior to change} - \text{sum of removed ratios} + \text{sum of added ratios} \\ & = \sum \left ( \frac{p}{q} \right )_{\text{old}} - \text{sum of removed ratios} + \text{number of added items} \\ & = 16.36670735 - 0 + 6 \\ & = 22.36670735 \text{ (up to 8 d.p.)} \end{align}

Thus, the new divisor is:

\begin{align} {div}_{\text{new}} & = {div}_{\text{old}} \times \frac{\sum \left ( \frac{p}{q} \right )_{\text{new}}}{\sum \left ( \frac{p}{q} \right )_{\text{old}}} \\ & = 15.5671 \times \frac{22.36670735}{16.36670735} \\ & = 21.2740 \text{ (4 d.p.)} \end{align}
Community content is available under CC-BY-SA unless otherwise noted.